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Abstract A strategy of DNA pooling aimed at identify-
ing markers linked to quantitative trait loci (QTLs),
‘Sequential Bulked Typing’ (SBT), is presented. The
method proposed consists in pooling DNA from
consecutive pairs of individuals ranked phenotypically,
i.e., pools are formed with individuals ranked (1st, 2nd),
(3rd, 4th),2 , (N-1st, Nth). The N/2 pools are sub-
sequently amplified using the polymerase chain reaction
(PCR). If the whole population is typed the number of
PCRs per marker is halved with respect to individual
typing (IT). But if this strategy is combined with selec-
tive genotyping of extreme individuals savings can be
further increased. Two extreme cases are considered: in
the first one (SBT0), it is assumed that only presence or
absence of a given allele can be ascertained in a pool;
in the second one (SBT1), it is further assumed that
differences between allele band intensities can be distin-
guished. The theory to estimate by maximum likeli-
hood the QTL effect and its position with respect to
flanking markers is presented. The behaviour of IT and
SBT was studied using stochastic computer simulation
in backcross and F

2
populations. Three percentages of

subpattern distinction (0, 50 and 100%) two population
sizes (n"1200 and 600) and two QTL effects (a"0.1
and 0.25 standard deviations) were considered. SBT1
had the same power as individual genotyping at half
the genotyping costs in all situations studied. Accuracy
of QTL location is not increased with a dense number
of markers, as opposed to individual typing. As a result
DNA pooling is not useful for accurate location of the
QTL but rather to pick up genome regions containing
QTLs of at least moderate effect. The theory developed
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provides the general theoretical framework to deal with
any DNA pooling strategy aimed at detecting QTLs.
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Introduction

A large number of DNA polymorphisms have been
uncovered by recent advances in molecular techniques.
Most of these polymorphisms are thought to be
neutral, but they do provide the main tools by which to
locate genes affecting traits of economic interest, which
are usually quantitative traits. Since the pioneering
work of Patterson et al. (1988) a large number of
experiments have located chromosome regions in
plants that contain genes affecting quantitative traits,
the so-called ‘quantitative trait loci’ (QTLs). Given the
amount of work involved in these types of experiments,
accurate methods for selecting chromosome regions of
‘potential interest’ in a reasonable time are very much
needed.

Two main strategies aimed at achieving this purpose
have been envisaged: selective genotyping (Lander and
Botstein 1989) and pooling DNA from several indi-
viduals (Giovannoni et al. 1991; Michelmore et al.
1991). By pooling DNA from resistant versus suscep-
tible individuals several authors have been able to
locate genes responsible for disease resistance in plants
(Michelmore et al. 1991; Poulsen et al. 1995; Villar et al.
1996; Tartarini 1996). In a trait showing continuous
variation, a generalization is pooling the individuals
with the highest and lowest performance (Darvasi and
Soller 1994) and looking for allelic bands specific to
each tail. Yet, the difference between alternative geno-
types has to be very large, at least more than two
standard deviations. Otherwise, the probability of find-
ing both genotypes is very high along all of the



Fig. 1a, b Electrophoresis patterns that can be distinguished in
a Mm]MM backcross (a) and in a Mm]Mm F

2
cross (b) when

a DNA pool of two individuals is amplified. The possible individual
genotype combinations are listed below each diagram

phenotypic range. The critical difference in quantitative
traits with respect to dichotomous traits is that in the
former the phenotypic distributions of alternative
genotypes overlap, and thus pooling strategies are
much less powerful.

Darvasi and Soller (1994) proposed that if actual
frequencies of the marker alleles can be inferred in the
amplified pool, bulked analysis can be directly applied
to quantitative traits. They suggested that allele
frequencies can be estimated from the quantitative
densitometry of allelic bands (Pacek et al. 1993).
The general performance of this method depends critical-
ly on the error associated to quantifying allelic frequen-
cies by densitometry, which poses serious technical
difficulties. First, allele frequencies in the amplified
product need not necessarily correspond to those in the
original mixture due to differential allelic amplification.
For instance, Taylor et al. (1994) found that only 39 out
of 226 microsatellites studied were suitable for pool
amplification in a cross between CAST/Ei and MEV
mice strains. Second, optimizing the bulk polymerase
chain reaction (PCR) protocol for a large number of
markers can be time consuming and subject to irre-
producible errors. The experimental error has to be
assessed in advance for each marker and allelic fre-
quency, which is time-consuming. Because of the tech-
nical skills needed, results may not be comparable
between laboratories.

In this work I present an alternative pooling strat-
egy, called ‘sequential bulked typing’ (SBT), aimed at
reducing the number of PCRs needed to detect QTLs
but which does not assume that pool allele frequencies
are accurately estimated. The theory has been de-
veloped for backcross (BC) and F

2
crosses between

inbred lines, but the same principles can be applied to
other schemes like dihaploid lines or within-family de-
signs. The performance of the method will be compared
with individual genotyping (IT) using classical interval
mapping (Lander and Botstein 1989).

Theory

The method

The method proposed consists of pooling DNA from consecutive
pairs of individuals ranked phenotypically, i.e., pools are formed
with individuals ranked (1st, 2nd), (3rd, 4th),2 , (N-1st, Nth). The
N/2 pools are subsequently amplified using PCR. If the whole
population is typed, the number of PCRs per marker is halved with
respect to individual typing, but if this strategy is combined with the
selective genotyping of extreme individuals, savings can be further
increased. I have only considered pools formed by consecutive pairs
of individuals, but any number of individuals can be pooled together
and pools can in principle be made up of different number of
individuals. In general, however, the informativeness of pool amplifi-
cation will decrease rapidly as the number of individuals per pool
increase.

Consider two completely inbred lines with alternative marker
alleles M and m fixed in each line. All possible electrophoresis bulk

patterns from a MM]Mm backcross and a Mm]Mm F
2

cross are
shown in Fig. 1. Pattern A (C) results from pools with both indi-
viduals having genotypes MM (mm), whereas in pattern B the two
bands, corresponding to both alleles, are observed. In the least
favourable case, only presence or absence of a given band can be
detected, and thus only patterns A, B

~
, and C are identified. I will

denote this case by SBT0. A more optimistic view is that, in addition
to presence versus absence, differences in band intensities between
pools can be identified. In this case a number of ‘B’ subpatterns are
distinguished, two in a BC and three in a F

2
cross (Fig. 1). Note that

the possibility of distinguishing subpatterns requires fewer assump-
tions than estimating allele frequencies, as subpattern identification
will not be affected by differential amplification provided that the
same allele tends to be amplified predominantly. Besides, any, pre-
vious labour to assess pool amplification error is minimum because
subpatterns are assigned simply by comparing the band intensities
corresponding to the different bulks. The effect of subpattern misas-
signment is studied below. I will denote by SBT1 the case where
subpatterns B

1
, B

2
or B

3
can be assigned in all ‘B’ bulks. In general,

SBTX indicates that subpatterns can be assigned in x% of the bulks.
If flanking markers are analysed, up to nine (BC) and 25 (F2)
patterns can be distinguished. Note that in analysing DNA pools we
deal with ‘patterns’ rather than with genotypes as in individual
typing.

The likelihoods

I will follow the usual convention of modelling the phenotypic
variation of a quantitative trait by a normal distribution. Consider
a trait y which follows a normal distribution conditionally on each
QTL genotype, g. The marginal phenotypic distribution is thus
a mixture of normals, the number of components being equal to the
number of possible QTL genotypes. Further assume that the trait is
standardized such that the variance within QTL genotype is one.
Thus p(y Dg

+
)"N(k

+
,1), where g

1
, g

2
, and g

3
correspond to QTL

genotypes GG, Gg, and gg, respectively; and k
1
"a, k

2
"d,

k
3
"!a, following classical notation (Falconer and Mackay 1996).

In the backcross, d cannot be estimated and I will assume instead
k
1
"a/2 and k

2
"!a/2.
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In classical interval mapping and individual typing genetic mar-
kers are scored throughout the genome and the likelihood is com-
puted along the intervals delimited between adjacent markers. The
likelihood can be written as

L
IT
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"

N
<
*/1 C

/'

+
+/1
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(Lander and Botstein 1989) where M is the marker genotype, N is
the number of individuals, n

'
is the number of possible genotypes,

two in a backcross or three in a F
2
cross; p(g DM) is the probability of

the QTL genotype given marker information, either single or flank-
ing markers, which can be easily obtained from transmission rules
given the distances between loci. (Note: I will use p()) to generally
refer to probability or density functions). I will assume that genetic
distances between markers are known with reasonable accuracy
such that they need not be estimated jointly with the QTL effect and
position.

The likelihood with SBT is given by
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where patt
*
is the electrophoresis pattern of ith bulk at the interval

marker considered, and subscripts i1 and i2 refers to first and second
individual of ith bulk, respectively. Note that in Eq. 2 the product is
over N/2 rather than over N as in Eq. 1. Above, p(y)"+/'

+/1
p (y Dg

+
)

p (g
+
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3
, respectively, in

a F
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and, in the case of SBT0,
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Similar expressions can be derived for SBT1 and F
2

crosses. Above,
p(MDy) is the probability of an individual having a given marker
genotype conditional on its phenotype. If the marker is unlinked to
any gene affecting the trait, this is simply the frequency of the marker
genotype in the population. Otherwise, the marker genotype and the
phenotypic values will be correlated. In general,

p(MDy)"
/'

+
+/1

p(M Dg
+
) p(g

+
Dy) (4)

where p (MDg) is the probability of the marker’s genotype given the
QTL genotype, which can be obtained from rules identical to those
of p(gDM) in Eq. 1, and p(gDy) is the probability of an individual
having a given QTL genotype conditional on its phenotype. In
a backcross,

p(g"‘GG’ Dy)"/(y!a/2)/[/(y!a/2)#/(y#a/2)] (5a)

p(g"‘Gg’ Dy)"/(y#a/2)/[/(y!a/2)#/(y#a/2)] (5b)

where /( ) ) is the standard normal density function. Extension to
flanking markers is straightforward. The equivalent equations to 5a
and 5b for a F

2
cross are

p(g"‘GG’Dy)"/(y!a)/[/(y!a)

#2 /(y!d)#/(y#a)] (6a)

p(g"‘Gg’Dy)"2 /(y!d)/[/(y!a)

#2 /(y!d)#/(y#a)] (6b)

p(g"‘gg’Dy)"/(y#a)/[/(y!a)

#2 /(y!d)#/(y#a)] (6c)

since there are three QTL genotypes with expected frequencies
1 : 2 : 1.

If only individuals with phenotype below y"z
1

and above y"z
2are genotyped (selective genotyping), p(yDg) in Eq. 1 is a truncated

normal distribution with a density function given by
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(Darvasi and Soller 1992). Selective genotyping can be combined
with SBT by genotyping only extreme pools. In this case, truncation
is taken into account by specifying truncation points in p(y) (Eq. 2).

Simulation study

The behaviour of IT and SBT was explored using stochastic com-
puter simulation in backcross and F

2
populations. Different per-

centages of subpattern distinction, SBT1, SBT0.5, and SBT0, were
considered. Two population sizes (n"1200 and 600) and two QTL
effects (a"0.1 and 0.25 SD) were considered. In the F

2
, both

complete additivity (d"0) and complete dominance (d"a) were
simulated but as the results were similar only the results with
complete dominance action are shown. Besides full genotyping,
selective typing of 10%, 20%, and 40% extreme individuals, half in
each tail, was considered. Two situations were studied, either that
the marker studied is analysed individually (e.g., it has not been
mapped), or that a number of markers are analysed jointly. In the
former case, it was assumed that the QTL was located exactly at the
marker. In the latter case, the QTL was simulated at position 25 cM
of a 100-cM chromosome. Markers were evenly spaced along the
chromosome every 50, 10, or 1 cM; i.e., 3, 11, or 101 markers,
respectively, were genotyped. Between 300 and 500 simulation repli-
cates were run for each case. Maximum likelihood estimates of a and
d were obtained by means of the Newton-Raphson algorithm, which
provides directly the observed information matrix and, conse-
quently, an approximate error of the estimates. Convergence was
very fast, usually in less than five rounds. The presence of linkage
between a marker and a QTL was tested by means of a t-test using
the asymptotic distribution of maximum likelihood estimates. The
type-I error probability was set to 0.05.

Results and discussion

All of the methods used here provided unbiased esti-
mates of additive and dominance parameters in all of
the situations studied (results not shown), as was ex-
pected from the asymptotic properties of maximum
likelihood estimates, although the standard errors of
the estimates were different for each method. The per-
formance in terms of power of IT, SBT1, SBT0.5, and
SBT0 for the combination of parameters described is
presented in Fig. 2 for a BC design when the marker
was analysed individually. The power of IT and SBT1
was almost identical in all situations studied. For in-
stance, for n"1200, a"0.1, 40% genotyped, power
was 0.484 and 0.482 for IT and SBT1, respectively.
Thus, a single line for both methods was drawn in the
figures. For the remaining SBT strategies, the relative
advantage of SBT over IT increased with population
size and QTL effect (Fig. 2b). This is precisely the
situation where pooling will be more useful, as it is
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Fig. 2a–d Power attained in a backcross with individual typing or
SBT1 (continuous line), SBT0.5 (dashed line), and SBT0 (dotted line)
for different population sizes (n) and QTL additive effects (a):
a n"1200, a"0.1 SD; b n"1200, a"0.25 SD; c n"600, a"0.1
SD; (d) n"600, a"0.25 SD

more useful to be able to limit genotyping work in large
populations than in moderate- or small-sized ones. In
addition, DNA pooling will be primarily used as an
initial screen to detect large-effect QTLs and discard
‘uninteresting’ genome regions, whereas the identifica-
tion of small-effect genes would require individual
genotyping. At moderate QTL effects and smaller
population sizes, the possibility of identifying B subpat-
terns becomes more critical in order to limit the num-
ber PCRs. For instance, for n"600 and a"0.25 SD
SBT0.5 is more effective than IT given an equal number
of PCRs, but SBT0 is more effective than IT only for
very extreme selective genotyping (Fig. 2d). For a"0.1,
DNA pooling is cost-effective only if the percentage
of bulks with subpatterns identified is at least 50%
(Fig. 1a, b).

The performance of bulked typing is inversely related
to the number of possible genotypic combinations
within B-pattern bulks. Thus, a priori one should ex-
pect SBT to be more useful in BC than in F

2
crosses

because the B pattern is less informative in the latter
cross (Fig. 1). However, the difference between extreme

phenotypes is approximately doubled in the F
2
, with

the result that F
2

designs are more powerful than BC
given an equal number of individuals (Fig. 3 vs.
Fig. 2a, c). In fact, for a"0.25 SD power was 1 or
nearly 1 for all of the methods and both population
sizes considered, except for SBT0 (results not present-
ed). As in BC, the power in estimating the additive effect
with SBT1 was identical to that with IT.

The above considerations make the possibility of
distinguishing subpatterns, at least in part of the bulks,
an important issue. As argued before, this is technically
much more feasible than estimating allele frequencies
from DNA pools of several individuals and it should
not be affected by differential amplification. A matter of
concern is the robustness of SBT1, as there always
exists a risk of misassignment within B subpatterns.
The impact of misassignment was studied by simula-
ting that subpatterns were assigned at random in
a given percentage of bulks. The results are presented in
Table 1 for a BC and a F

2
cross. As expected, misas-

signment caused a downward bias in the estimates and
lowered the power; however, these effects were negli-
gible unless the proportion of errors exceeded 10% or
20%. Therefore, a sensible strategy would be to com-
pare the estimates obtained with SBT0 and SBT1: very
different values would be a symptom of misassignment.
Otherwise, SBT1 estimates should be preferred, as they
have smaller errors.
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Fig. 3 Power attained for the additive effect in a F
2

cross with
individual typing or SBT1 (continuous line), SBT0.5 (dashed line), and
SBT0 (dotted line) for different population sizes: a n"1200,
b n"600. In all cases complete dominance was assumed (a"d) as
well as a QTL additive effect a"0.1 SD

Table 1 Effect of errors in assigning B subpatterns on the QTL effect
estimates (â) and on power (b) for two designs: a backcross (600
individuals, QTL effect"0.25 SD) and a F

2
cross (1200 individuals,

QTL effect"0.10 SD) populations. The proportion genotyped was
the 40% extreme

Percentage Backcross F
2

errors â b â b

0 0.250 0.91 0.100 0.78
1 0.249 0.90 0.102 0.77
5 0.247 0.86 0.099 0.76

10 0.247 0.86 0.096 0.70
20 0.225 0.78 0.090 0.68
30 0.216 0.78 0.084 0.64
50 0.183 0.64 0.071 0.54

Table 2 Power for the dominance effect in a F
2

cross using indi-
vidual (IT) and sequential bulked typing (SBT) for population size
n and selective genotyping of the q% extreme progeny; complete
dominance and a QTL effect of 0.1 SD were assumed

n q (%) IT SBT1 SBT0

1200 100 0.79 0.64 0.63
40 0.78 0.63 0.61

600 100 0.54 0.43 0.42
40 0.48 0.29 0.25

The theory developed here allows us to estimate
dominance as well as additive effects in an appropriate
design, i.e., in a F

2
cross. Yet most of our information

on the dominance effect comes from the heterozygous
genotypes, and these are pooled in the less-informative
pattern, B. It is not possible to distinguish between Mm,
Mm pools, which contribute mostly to the estimate of
the dominance effect, and MM, mm pools, which con-

tribute to the estimate of the additive effect. This is
illustrated in Table 2, where it can be seen that power
with SBT was not affected by the possibility of distin-
guishing subpatterns. Power for the dominance effect
and the additive effect was similar for SBT0, as can be
seen with comparisons between Table 2 and Fig. 3. All
in all, DNA pooling is a strategy that is more efficient in
estimating additive effect than dominance effect.

A second set of simulations were run in order to
study the effect of marker spacing, under the assump-
tion that there is already an existing genetic map for the
species under consideration and that distances between
markers are known or can be estimated with reason-
able accuracy. Results for different marker spacings
and either full genotyping or 40% selective genotyping
are presented in Table 3 for a BC design and a QTL
effect a"0.25 SD. The most important aspect to notice
is that marker spacing and selective genotyping affects
the estimates of the QTL effect and its position in
a different way. Estimates of QTL effect are unbiased
irrespective of marker spacing and selective genotyp-
ing, although the associated error is inversely related to
the number of individuals and, to a lesser extent, by the
number of markers. In contrast, estimates of QTL
position are much more sensitive to selective genotyp-
ing. Whereas most of the information on the QTL effect
is conveyed by individuals departing from the mean,
QTL position accuracy depends primarily on the
number of recombinants between markers, which is
proportional to the number of individuals, irrespective
of their phenotype. With fewer individuals genotyped,
power decreases and location estimates tend to be
scattered more or less at random along the chromo-
some. On average, the mean is ‘regressed’ towards the
middle of the chromosome (here 50 cM). This effect is
more noticeable with SBT than with individual typing
(Table 3). An a priori surprising result is that a dense
marker spacing even deteriorated location estimates.
The explanation is that in pool analyses, the larger the
number of markers, the larger the number of marker
phase genotypes that have to be inferred, e.g., whether
MMNN, mmnn or MMnn, mmNN where M and N are
flanking markers—genotype combinations are more
likely. Consequently, the chances of errors increase
without the reward of a more precise location estimate,
as this precision is only moderately increased with very
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Table 3 Effect of selective
genotyping of the q% extreme
progeny and of marker spacing
on the QTL additive effect
estimate (â) and its position
estimate (d) in a backcross design
with 600 individuals, according
to different typing strategies: IT,
individual typing; SBTX,
sequential bulked typing
when x percent of the
B subpatterns can be assigned.
The simulated QTL effect and
position were 0.25 SD and 25 cM,
respectively. Empirical standard
errors in parentheses

q (%) Number of â d
markers

IT SBT1 SBT0 IT SBT1 SBT0

100 3 0.258 0.254 0.228 0.307 0.318 0.444
(0.107) (0.156) (0.112) (0.233) (0.304) (0.273)

11 0.273 0.254 0.168 0.288 0.360 0.502
(0.081) (0.156) (0.111) (0.184) (0.311) (0.304)

101 0.270 0.226 0.145 0.269 0.357 0.478
(0.099) (0.149) (0.128) (0.142) (0.325) (0.327)

40 3 0.263 0.265 0.235 0.386 0.406 0.450
(0.122) (0.190) (0.154) (0.273) (0.339) (0.270)

11 0.255 0.235 0.164 0.310 0.431 0.509
(0.118) (0.152) (0.141) (0.202) (0.280) (0.299)

101 0.275 0.258 0.171 0.291 0.372 0.479
(0.107) (0.186) (0.137) (0.175) (0.310) (0.323)

dense mapping. For instance, with individual typing
a 33-fold increase in genotyping work only reduces the
standard error of position estimate by 40%. Darvasi et
al. (1993) showed that neither power nor accuracy
increased in IT with a marker spacing below 20 cM.
This phenomenon is even more remarkable with DNA
pooling. This has important practical consequences, as
it suggests that typing markers spaced closer than 50
cM is not worth the work if SBT, or any other DNA
pooling strategy, is employed. Power for QTL detec-
tion was not increased either (results not presented).
Note, however, that the QTL effect should be less
biased than its position and thus the (economic) benefit
of an eventual identification of the gene can be bal-
anced in advance against the total cost of fine-mapping
the relevant region.

Finally, it should be mentioned that selective
genotyping and DNA pooling strategies are optimum
for a single-trait analysis. In practice, experiments are
carried out bearing in mind that even if a trait is of
particular relevance, other traits will be recorded and
analysed. A loss of power is expected in the analyses of
these secondary traits with SBT. Some simulations
were run in order to explore this issue. As expected, the
QTL effect errors were larger but, interestingly, esti-
mates were still unbiased (results not shown). The worst
case is when a second trait is completely uncorrelated
with the trait on which ranking is based. For instance in
a BC, n"600, q"100%, the power for an uncorrelated
trait QTL with SBT1 (SBT0) is 0.67 (0.54), and 0.20
(0.16), for a"0.25 and 0.10 SD, respectively. These
figures are about 25—30% lower than for the main trait
(Fig. 2c, d). It seems that SBT will enable the largest
effect QTLs for a number of traits to be pinpointed
simultaneously if these are not completely uncorrelated.

Conclusion

A large part of the time and costs involved in QTL
detection experiments is expended in genotyping. DNA

pooling is a powerful strategy by which to reduce the
genotyping effort for mapping purposes and for the
identification of markers linked to dichotomous traits.
Yet, its relevance on the analysis of quantitative traits is
less well studied. The theory developed in this work
provides the general theoretical framework to deal with
any DNA pooling strategy aimed at detecting markers
linked to quantitative traits. It allows us to utilize
information from flanking markers and obtain esti-
mates for both the additive and dominant effects. Be-
sides the cases studied, several other situations, like
pools consisting of more than two individuals or more
than one QTL models, can be accommodated. In prac-
tice, the optimum strategy may combine individual and
pool typing. Again, this poses no methodological prob-
lem. Two main conclusions can be drawn from this
study.

First, if the main purpose of the experiment is to
estimate the QTL effect associated with a given set of
markers, then SBT has the same power as individual
genotyping at half the genotyping costs, provided that
the subpatterns can be distinguished. Comparing the
estimates obtained with SBT0 and SBT1 will provide
insight into the extent of pattern misassignment. The
smaller the percentage of bulks for which the subpat-
terns are correctly identified, the larger the minimum
QTL effect that is to be detected with SBT.

Second, DNA pooling is not useful for accurate loca-
tion of the QTL. A reasonable strategy seems rather to
use SBT with widely spaced markers, which would
allow us to pick up the ‘interesting’ genome regions,
those containing QTLs of at least moderate effect. In
a second stage, individual typing with a large number
of markers within each promising region might be
unavoidable if the gene is to be located with precision.
But, alternatively, as our understanding of the physi-
ology of ‘complex’ quantitative traits is deepened and
as genetic maps become more densely populated with
codifying sequences, the candidate gene approach will
become more attractive. SBT would allow us to pin-
point a series of regions hopefully containing a (small)

556



number of candidate genes. Their direct effects will be
checked in a second stage. SBT provides a compromise
between individual typing for a large number of mar-
kers, which is highly onerous, and DNA pooling of
both extreme tails (Darvasi and Soller 1994), which is
likely to be very imprecise.
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